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The study of freezing using perturbative classical density-functional theory is revisited, using a bridge
functional approach to resum all terms beyond second order in the free energy expansion. More precisely, the
first-order direct correlation function of the solid phase is written as a functional expansion about the homo-
geneous liquid phase, and the sum of all higher-order terms is represented as a functional of the second-order
term. Information about the shape and uniqueness of this bridge functional for the case of hard spheres is
obtained via an inversion procedure that employs Monte Carlo fluid-solid coexistence data from the literature.
The parametric plots obtained from the inversion procedure show very little scatter in certain regions, suggest-
ing a unique functional dependence, but large scatter in other regions. The scatter is related to the anisotropy
of the solid lattice at the particle scale. Interestingly, the thermodynamic properties of the phase transition are
quite insensitive to the regions where the scatter is large, and several simple closures �i.e., analytical forms of
the bridge function� reproduce exactly the liquid-solid coexistence densities and Lindemann parameter from
simulation. The form of these closures is significantly different from the usual closures employed in liquid-state
integral equation theory.

DOI: 10.1103/PhysRevE.80.031109 PACS number�s�: 05.20.Jj, 64.70.dm

I. INTRODUCTION

Classical density-functional theory �DFT�, rooted in the
functional dependence of free energy on density profile �1�,
has been a popular tool to study liquid-solid transitions in
classical systems �2�. The solid phase is represented by a
density distribution within a lattice structure imposed
through an order parameter, while the liquid phase is as-
sumed homogeneous with certain characteristic correlation
functions. Two categories of theory emerge that differ in the
manner of implementation of the above concept. Perturbative
DFT, pioneered by Ramakrishnan and Yussouff �3�, ex-
presses the excess Helmholtz free energy of the solid in a
functional expansion about the excess Helmholtz free energy
of the coexisting liquid. This approach was pursued by
Haymet and Oxtoby �4,5� and Bagchi et al. �6� and yielded
remarkably good predictions of the coexistence properties of
the hard-sphere system. However, progress in this area then
slowed due to issues with the convergence of the functional
expansion �7� and the Fourier transform methodology em-
ployed in the calculations �8�. Nonperturbative DFT focuses
on models for the excess Helmholtz free energy density �2�,
constructed so as to reproduce the direct correlation function
of the liquid phase upon functional differentiation, e.g., the
weighted density approximation �WDA� and its extensions
�9–12�, or by mapping free energy density and structural
correlation function of a solid onto those of an effective liq-
uid, e.g., the effective liquid approximation �ELA� and its
extensions �13–15�. The hard-sphere coexistence property
predictions of these theories were in much closer agreement
with the molecular simulation results. However, such ther-
modynamic and structural mapping is argued �16� to be ap-
plicable only when large density changes occur at freezing

transitions, which limits their applicability to soft interpar-
ticle interactions �17�. Furthermore, nonperturbative DFTs
tend to become computationally costly as each pair of phase
points involves evaluating equilibrium structure of solid and
then searching for a coexisting liquid. Therefore it is worth-
while to consider if the traditional limitations of perturbative
DFT can be overcome.

In the present study, we apply an idea first developed in
the DFT of inhomogeneous fluids �18� to improve the accu-
racy of perturbative DFT of liquid-solid phase transitions.
We propose that it is possible to resum the higher-order
terms in the free energy functional expansion and represent
them as a bridge functional, which in turn may be repre-
sented in terms of certain structure functions. We explore this
idea in the context of freezing of the hard-sphere fluid. In
Sec. II we present a general overview of the theory of phase
transition and our ansatz regarding the bridge functional re-
summation. In Sec. III we use an inverse procedure to extract
the bridge functional from Monte Carlo �MC� simulation
data on hard-sphere freezing; we explore issues of unique-
ness of the bridge functional and show how it may be repre-
sented as a simple polynomial function of a structural corre-
lation function. Sec. IV provides conclusions.

II. THEORY

A. Some exact thermodynamic relationships

First consider a single thermodynamic phase comprising
one particle species at fixed temperature T, volume V, and
chemical potential �. No external fields are present. The
grand potential energy of the phase �2,19� can be written as
�=F−��d1��1�, where F is the Helmholtz free energy and
��1� is the number density of particles at position R1, which
is denoted by the shorthand notation 1. Both � and F are
functionals of ��1�. For fluid phases with no external fields*ford@ecs.umass.edu
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the density will be simply a constant, but this will not be true
for the solid phase model so we keep the more general func-
tional notation. At equilibrium the grand potential is mini-
mized with respect to the density function so that

������
���1�

�
�eq

= 0. �1�

Splitting the Helmholtz free energy into ideal and excess
parts as F=Fid+Fex and applying Eq. �1� gives

�� = ln���1��3� − c�1����1�� , �2�

where � is the thermal de Broglie wavelength of the par-
ticles, �=1 /kT with k the Boltzmann constant, and
c�1����1��=−��Fex��� /���1� is the first-order direct correla-
tion function �dcf�.

Next we assume the conventional starting point for the
perturbative DFT of solid-liquid equilibrium. The liquid is
homogeneous with constant number density �0=N0 /V. The
solid is constrained to a lattice such that the density field is
�s�1�= 1

vl
�i=1

Ns e−�R1 − ri�
2/l2, where vl=�3/2l3 with l the Gaussian

width parameter, and the ri are the Bravais lattice vectors.
Note that �d1�s�1�=Ns. For the two phases to be in equilib-
rium the following conditions must be met

�s��s� − �0��0� � �� = 0, �3�

�s − �0 � �� = 0, �4�

���/�l = 0. �5�

The first two equations represent the conditions of mechani-
cal and chemical stability, respectively. The introduction of
the parameter l imposes a symmetric distribution of each
particle center about its lattice point �20�, and we require an
additional condition of stability for that parameter as given
by Eq. �5�. The chemical potential equality of Eq. �4� com-
bined with Eq. �2� leads immediately to a useful relationship
between the dcf’s of the two coexisting phases

cs
�1���s�1�� − c0

�1���0� = ln	�s�1�
�0


 , �6�

which we will use later.
The goal is to employ an accurate model of the free en-

ergy functional F���, or more to the point the free energy
difference �F=F��s�−F��0�, to predict the values of �0, �̄s
�Ns /V, and l that satisfy Eqs. �3�–�5�.

B. Perturbative DFT and our bridge functional ansatz

The free energy difference between the solid and liquid
phases can be written as the sum of ideal and excess contri-
butions, �F=�Fid+�Fex, where

��Fid =� d1�s�1�ln��s�1��3/e� −� d1�0 ln��0�3/e� ,

�7�

and

��Fex = −� d1�
�0

�s�1�

���1�c�1����1�� . �8�

The excess contribution is given by a functional integration
of c�1� as the density distribution changes from the homoge-
neous liquid state �0 to the structured solid state �s�1�. A
perturbative approach makes this functional integration trac-
table by employing an expansion about the liquid state

c�1����1�� = c0
�1���0� +� d2c0

�2��1,2;�0����2� − �0�

+ �
n=3

	
1

�n − 1�!� ¯� d2d3 . . . d�n�


 �
m=2

n

���m� − �0�c0
�n��1,2, . . . ,n;�0� . �9�

The coefficients in the expansion are the hierarchy of direct
correlation functions of the homogeneous liquid phase. In
principle these functions are amenable to numerical compu-
tation, but in practice only c0

�2� is readily accessible. The
earliest work on DFT of freezing was based on truncation of
this series at n=2, which gave fairly accurate results for hard
spheres �6,5�. Curtin later estimated the third-order term by
differentiating the WDA free energy functional three times; it
was found to be of the same order of magnitude as the
second-order term, leading to the conclusion that conver-
gence of the expansion is not rapid enough to justify a trun-
cation at n=2 and there must be some fortuitous cancella-
tions in the sum of higher-order terms �7�. Understandably,
little progress has been made on perturbative DFT of freez-
ing since that time.

More recently an important observation was made by
Zhou and Ruckenstein �18� while working on the related
problem of perturbative DFT of inhomogeneous fluids. In
such problems there is only one thermodynamic phase but its
spatial density profile is inhomogeneous due to the presence
of an external field. Equation �9� then relates the properties
of the fluid in the field to those of the homogenous fluid.
Zhou and Ruckenstein showed that the n�3 terms in the
expansion could be resummed and represented as a bridge
functional, based on the universality principle of the free
energy functional �i.e., the functional form of the free energy
expansion is independent of the specific nature of the inho-
mogeneity�. Equation �9� thus becomes

c�1����1�� = c0
�1���0� + ��1� + B��1�� , �10�

where ��1���d2c0
�2��1,2 ;�0����2�−�0� and �1� is some

suitable choice of a structural distribution function. This for-
mulation has much in common with Ornstein-Zernike �OZ�
integral equation theory and in fact yields the OZ equation
when the Percus identity is invoked �18�. The function ��1�
is similar to the OZ indirect correlation function in that it
represents a convolution of the local density difference with
the bulk dcf. If B is represented as a functional of �, viz.
B���1��, then closure relations in the typical OZ form, such
as hypernetted-chain �HNC, B=0� or Percus-Yevick �PY, B
=ln�1+��−��, may be applied. Closures of this type were
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found to be quite accurate for predicting the structure of
various model fluids at solid interfaces �18,21�.

The main purpose of the current paper is to explore the
extension of the bridge functional representation to the
liquid-solid transition of homogeneous systems. Our primary
ansatz is that Eq. �10� may be applied to the liquid- solid
transition such that

cs
�1���s�1�� = c0

�1���0� + ��1� + B���1�� , �11�

with

��1� � � d2c0
�2��1,2;�0���s�2� − �0� . �12�

There are significant differences between the present prob-
lem of solid-fluid equilibrium and that of inhomogeneous
fluids. Here the inhomogeneity is imposed through a Gauss-
ian field structure on the solid density, rather than some ex-
ternal potential acting mechanically on the particles. Further-
more, the present problem involves a thermodynamic phase
transition while the other �usually� does not. Since the struc-
ture and free energy in the liquid state are being used to
predict the same quantities in a completely different thermo-
dynamic state, there is no a priori guarantee that the same
closures, or indeed the bridge functional approach of Eq.
�11�, will be useful in predicting fluid-solid equilibrium.

III. RESULTS

A. Extracting the bridge function from Monte Carlo
simulation data

The usual forward calculation procedure would be to as-
sume a model for B, thus yielding a model for �Fex and
allowing Eqs. �3�–�5� to be solved for �0, �̄s, and l at liquid-
solid equilibrium. Conversely, we can take advantage of the
fact that these three coexistence properties are known from
independent Monte Carlo simulation work and use them to
discover the underlying form of the bridge function. We pro-
ceed in this direction by combining Eqs. �6� and �11� to find
the following exact relationship:

B = ln��s�1�/�0� − ��1� . �13�

Taking the coexistence properties �0=0.943 47, �̄s
=1.040 87, and l=0.113 98 from the MC simulation study of
Hoover and Ree �22�, and employing for c0

�2��1,2 ,�0� in Eq.
�12� the highly accurate analytical expression from PY-OZ
theory �19�, we see that all terms on the right-hand-side of
Eq. �13� are known for any location R1 in the lattice. Thus
the local value of the bridge functional is also known exactly.
The only approximations are any uncertainties in the MC
simulation data and any inaccuracies inherent in the PY-OZ
dcf for the homogeneous fluid phase. �We explored the ef-
fects of the latter issue by trying different forms of the dcf,
such as those obtained from other closures at the OZ level.
Only slight quantitative differences were observed; the quali-
tative behavior was identical to that presented below.� We
started the numerical evaluation by considering the smallest
repeating volumetric unit of the fcc lattice as shown in the
inset of Fig. 2. A 50
50
50 grid of points was laid uni-

formly over this volume, and the values of � and B were
calculated at each grid point using Eqs. �12� and �13�. The
integral in Eq. �12� was evaluated in real space using meth-
ods presented previously �23�. The large set of points in Fig.
1 represents a parametric plot of �� ,B� values obtained at the
grid points.

As a general guide, the region ��1��−2 corresponds to
locations R1 that are within 0.25� or 2.2l of a lattice site ri,
where � is the hard-sphere diameter and l is the Gaussian
width parameter used to describe solid density. A unique
functional dependence of B on � is evident in this region.
However, the points scatter widely at lower values of �, in-
dicating no unique functional relationship, before pinching
together again at �−14. Clearly, in regions outside the
Gaussian core, there are many locations that have identical
values of � but very different values of B. It is interesting
that a regular striped pattern appears in this region of the
data. The number of stripes, and the density of points along a
given stripe, increases with the number of grid points used,
but the basic pattern is maintained. Each stripe represents a
trace as we move from a point on one edge to corresponding
point on a parallel edge of the smallest volumetric unit.
These stripes usually end up in the dense region �−8���
−5� of Fig. 1 as strands or loops. All stripes �and conse-
quently the entire data set of Fig. 1� are thus bounded on the
left side by the points lying along an edge of the volumetric
unit.

Equation �13� and the behavior in Fig. 1 also imply that �
is not everywhere a unique function of �s. A parametric plot
of these two functions, as given in Fig. 2, provides more
insight. The small brushlike features that appear for ��−2
indicate the source of the nonuniqueness that is reflected
more dramatically in Fig. 1, namely, that there are locations
in the lattice with the same value of density but different
values of the convolution integral �. This is a consequence of
the anisotropy of the lattice at the particle scale. Near each
lattice site the density distribution is dominated by the par-
ticle associated with that site; this density will have a high
degree of spherical symmetry due to the assumed isotropic
Gaussian form, yielding many locations with nearly identical
densities. However, the value of ��1� from the volume inte-

FIG. 1. Parametric representation of the bridge function of Eq.
�13� as extracted from MC simulation data.
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gral of Eq. �12� will obviously depend on the distribution of
other particles �lattice sites� around location R1. The sensi-
tivity of ��1� to the surrounding structure is weak for R1
very close to a lattice site, since the range of the integral is
limited by the dcf and its value will be dominated by the
density of the particle associated with that site. Thus ��1� is
nearly a unique function of �s�1� at high densities. The sen-
sitivity of ��1� to the surrounding structure will become
stronger for R1 that are farther from a lattice site, leading to
the nonuniqueness at lower densities. The regular patterns
seen in the scatter plot of Fig. 1 reflect patterns in the direc-
tional anisotropy of the fcc lattice at the particle scale. Baus
commented on the limitations of using isotropic Gaussians to
parameterize a solid lattice �20�; it would be interesting to
see how a more general parameterization would affect the
results in Figs. 1 and 2.

B. Simple polynomial forms for the bridge function

Figure 1 shows that there are regions where B is a unique
function of � but other regions where it certainly is not. This
begs the question of whether a function that at least approxi-
mately describes the behavior of the bridge functional can be
useful in predicting the thermodynamics of the phase transi-
tion. We consider the case of OZ theory, where inversion of
data from the MC simulation of a fluid is used to generate
scatter plots analogous to Fig. 1. �In OZ theory, � is the
indirect correlation function and the plots are commonly re-
ferred to as Duh-Haymet plots �24�.� Recent work on hard-
sphere fluids shows that uniqueness is not strictly satisfied,
with violations especially seen outside the hard core region,
and yet closures based on the assumption of uniqueness can
still yield accurate predictions of structure and thermody-
namics �25�. We explore this possibility here by postulating a
low-order polynomial functionality for B��� and fitting the
coefficients to the thermodynamic properties known from
MC simulation. More specifically, we assume that B is a
polynomial in � having exactly three unknown coefficients
and iteratively solve Eqs. �3�–�5� until we find the set of
coefficient values that yield the known �0, �̄s, and l from MC

simulation. We solve Eqs. �3�–�5� using a real-space method
presented previously �8,23�. The only difference is that our
free energy model now includes the higher-order terms via
the bridge functional. In the Appendix we derive the new
form of the free energy.

Since the extracted B��� data shown in the previous sec-
tion do not pass through origin, we can say that there must be
a constant term in the polynomial model. Following are a
few of the polynomic forms that we tried, written with the
fitted values of the coefficients:

B1��� = − 0.0609�2 − 0.2047� + 3.4766, �14�

B2��� = 0.0146�3 − 0.3073� + 3.3692, �15�

B3��� = − 0.0291�3 − 0.1825�2 + 3.6906. �16�

Figure 3 provides a comparative plot between the exact and
polynomial bridge functions.

Interestingly, all of the polynomial models match the ex-
tracted B data at higher � values where a unique functional-
ity is indicated. However, there is a considerable divergence
among the various models at lower � where the extracted
data are scattered and no unique functionality is indicated.
We emphasize that all of the polynomial models presented
yield the exact results for �0, �̄s, and l as obtained by MC.
This leads us to conclude that the behavior of the bridge
functional at lower values of � does not have a significant
impact on the thermodynamic properties predicted. It is re-
markable that similar observations were made by Fantoni
and Pastore �25� in their MC study of liquid-state OZ theory
bridge functionals in hard-sphere systems. They found that
outside the hard core region B is multivalued and the tradi-
tional closures do not track the data in a quantitative way,
especially at higher density, and yet this situation has little
effect on the accuracy of the radial distribution functions and
thermodynamic properties predicted by the closures.

Returning to the present study, one could rule out certain
closures based on other physical insight. For example, from
Eqs. �2� and �11� it is clear that ��1�+B���1�� represents the

s

Smallest repeating
volumetric unit in
fcc lattice.

FIG. 2. Parametric plot of ��1� vs �s�1� from unique points in
the lattice. The highest �s�1� values occur near lattice sites.

FIG. 3. Comparative plot of B with simple polynomial functions
fit to the coexistence properties. Note that all of these functions
reproduce the exact MC freezing results for hard spheres.
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excess chemical potential difference between the solid and
liquid phases at location R1. This difference should be nega-
tive at low density locations, and the polynomial form B3
could be discarded as it does not satisfy this criterion. We
note that in the thermodynamically relevant region where all
models agree with the data, the values of B are on the order
of unity and never rise above �4.5; these moderate values
are consistent with the fact that setting B=0 �truncating Eq.
�9� at n=2� gives reasonable results for the coexistence prop-
erties �5,6�.

Finally, we note that traditional OZ closures �other than
HNC, B=0� are not appropriate as bridge functions for the
liquid-solid transition. Consider the PY closure, B
=ln�1+��−�, as an example. This function diverges to −	
as � approaches −1, passes through the origin, and never
achieves positive values. Such properties, which are common
to most traditional OZ closures and are not problematic in
that context, are not consistent with the behavior of the
bridge functional observed in the current work. Since the
problems of single-phase fluid structure and solid-liquid
phase coexistence are physically quite different, it is not sur-
prising that the bridge functional behavior is qualitatively
different.

IV. CONCLUSION

Employing MC simulation data on the coexistence densi-
ties and Gaussian order parameter for hard-sphere freezing,
we have constructed parametric plots of the bridge functional
B��� that represents the sum of terms beyond second order in
the DFT free energy difference expansion. Distinct regions
of uniqueness and nonuniqueness of the B��� functionality
are strongly indicated by the data; the existence of these
different regions can be understood through the anisotropy of
the solid fcc lattice at the particle scale. Forward DFT calcu-
lations using simple closures, i.e., low-order polynomial rep-
resentations of B���, demonstrate that the coexistence prop-
erties are insensitive to the region of nonuniqueness. There
are strong parallel themes between our results and those from
recent MC simulation studies on liquid-state OZ theory clo-
sures, although the quantitative behavior of the closures is
quite different.

In summary we find that the known fluid-solid coexist-
ence properties of hard spheres, within the context of an
order-parameter-based perturbative DFT, can be exactly re-
produced using a low-order polynomial closure B��� that is
accurate in the high-density regions of the solid lattice. Our
findings indicate that there is merit to further exploration of
closure-based approaches to the perturbative DFT of freez-
ing. One could anticipate development that parallels that of

OZ theory for the liquid state, with an appropriate set of
closures that describe the solid-liquid transitions in various
potential models.
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APPENDIX A

In this section we derive the equation for the excess free
energy functional that corresponds to our bridge function
model of the direct correlation function. Applying the charg-
ing approach �2� to the functional integration in Eq. �8� gives

��Fex = −� d1�
0

1

d����1�c�1�����1�� , �A1�

where ���1����s�1�−�0� and ���1�=�0+����1�. Our
model for the direct correlation function yields

c�1�����1�� = c0
�1���0� + ��1;��� + B���1;���� , �A2�

where the functional dependence of � on � has been explic-
itly noted. By the definition of � we have

��1;��� =� d2����2� − �0�c0
�2��1,2;�0�

=� d2���s�2� − �0�c0
�2��1,2;�0� = ���1� ,

where ��1� is defined in Eq. �12�. Now Eq. �A2� becomes

c�1�����1�� = c0
�1���0� + ���1� + B����1�� . �A3�

Substituting the result of Eq. �A3� into Eq. �A1� and integrat-
ing with respect to � yields

��Fex = −� d1���1��c0
�1���0� +

��1�
2

+
I���1��

��1� �
�A4�

where I���1��=�0
��1�dtB�t�.

Equation �A4� is the excess free energy model employed
in the present work. It can be evaluated using standard nu-
merical techniques, given an analytical form for B���.
Clearly if B=0 then I=0, and �Fex reduces to the usual
result from truncation at second order.

We further note that Eq. �A4� is similar in form to a
weighted DFT, with the quantity in braces acting as a free
energy per particle that is a function of the weighted density
��1�. However, Eq. �A4� has been developed explicitly for
the free energy difference.
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